Computational Optimization of Residual Power Series Algorithm for Certain Classes of Fuzzy Fractional Differential Equations
نویسندگان
چکیده
منابع مشابه
A Fuzzy Power Series Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power series in the Caputo derivatives sense. To illustrate the reliability of method some examples are provided. In this paper a new method for solving fuzzy differential equation with fractional order is considered. The fuzzy solution is construct by power...
متن کاملApproximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملResidual Power Series Method for Solving Time-fractional Model of Vibration Equation of Large Membranes
The primary aim of this manuscript is to present the approximate analytical solutions of the time fractional order α (1<α≤2) Vibration Equation (VE) of large membranes with the use of an iterative technique namely Residual Power Series Method (RPSM). The fractional derivative is defined in the Caputo sense. Example problems have been solved to demonstrate the efficacy of the present method and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Differential Equations
سال: 2018
ISSN: 1687-9643,1687-9651
DOI: 10.1155/2018/8686502